
DPLL Algorithm Implementation Report

Yujun Kim

May 20, 2024

Abstract

This report details the implementation of the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm for solving SAT problems.

1 Introduction

The DPLL algorithm is a backtracking-based search algorithm used to determine the satisfiability of
propositional logic formulas in Conjunctive Normal Form (CNF). It extends the Davis-Putnam algorithm
by incorporating key techniques such as unit propagation, pure literal elimination, and clause learning.
This report outlines the implementation of the DPLL algorithm, the design decisions involved, and the
rationale behind these decisions.

2 Implementation Details

The implementation is structured into several key functions, each responsible for different aspects of the
DPLL algorithm. The main function orchestrates the process by calling these helper functions.

2.1 Data Structure

In implementation of the algorithm, selecting proper data structure is crucial in both completion and
the performance of the algorithm.

• Variables. Each variable is parsed as distinct natural number, as imposed from the input structure.

• Literal, clause, and formula. Literal is parsed as an integer. Clause is parsed as a list of integer.
Formula is parsed as a list of clause. i.e. list of list of integers.

• v dict: Saves the assignment of each variables and keep track whether the assignment is implied
or decided. Its type is a Dict[Int, (Bool, Int)]. Given a variable x, v dict(x) gives tuple of
boolean and integer, where boolean indicates whether the assignment is true or false. The integer
part indicates whether the assignment of the variable is decision assignment or implied assignment.
If the assignment is implied by i-th clause, the corresponding integer is i. If the assignment is
decided, then the corresponding value is None

• v order: Keeps track of order of assignment. Its type is List(int). It is necessary in backtracking
and clause learning.

2.2 Reading Input and Parsing Output

• read input function reads a CNF formula from a file and parses it into a list of clauses. Moreover,
it also returns number of variables and number of clauses in the formula.

• parse assignment function takes s bool, v dict as input and parse it to the required output
format. s bool is simply a boolean indicating satisfiability of the formula, and v dict follows
above description.

1

2.3 Main DPLL Function

The DPLL function initializes the assignment and iteratively performs unit propagation, clause learning,
and simplification until it finds a solution or determines that the formula is unsatisfiable.

def DPLL(nvar , nc lause , formula) :
s b o o l = Fal se
v d i c t = dict ()
v order = []
while True :

c o p i e d f o r m u l a f o r u n i t p r o p a g a t e = [c l a u s e [:] for c l a u s e in formula]
c o p i e d f o r m u l a f o r s i m p l i f y = [c l a u s e [:] for c l a u s e in formula]
v d i c t , v o rder = un i t propagate (c o p i e d f o r m u l a f o r u n i t p r o p a g a t e , v d i c t , v o rder)
s i m p l i f i e d f o r m u l a = s i m p l i f y (c o p i e d f o r m u l a f o r s i m p l i f y , v d i c t)
i f len (s i m p l i f i e d f o r m u l a) == 0 :

return True , v d i c t
e l i f [] in s i m p l i f i e d f o r m u l a :

c o p i e d f o r m u l a f o r c l a u s e l e a r n i n g = [c l a u s e [:] for c l a u s e in formula]
l e a r n e d c l a u s e = c l a u s e l e a r n i n g (c o p i e d f o r m u l a f o r c l a u s e l e a r n i n g , v d i c t , v o rder)
formula . append (l e a r n e d c l a u s e)
i f len (l e a r n e d c l a u s e) == 0 :

return False , v d i c t
else :

v d i c t , v o rder = backtrack (v d i c t , v order , l e a r n e d c l a u s e)
else :

v d i c t , v o rder = dumb dec i s i on s t ra t egy (nvar , v d i c t , v o rder)
return s boo l , v d i c t

2.4 Supporting Functions

Several supporting functions are used within the DPLL function to handle unit propagation, clause
learning, simplification, and decision strategies. These include:

• unit propagate: Simplifies the formula by assigning values to variables that appear as single
literals in any clause.

• clause learning: Identifies a conflict and learns a new clause to prevent the same conflict from
occurring again. Uses v order to backtrace.

• simplify: Removes literals and clauses based on the current variable assignments.

• dumb decision strategy: Makes a decision by assigning a value to the first unassigned variable.

3 Design Decisions and Rationale

The primary goal of the implementation was to create a clear and modular DPLL algorithm that can be
easily extended with additional optimizations. Several design decisions were made to achieve this:

3.1 Unit Propagation

Unit propagation is a critical step in the DPLL algorithm as it simplifies the formula significantly before
making any decisions. By propagating units early, the search space is reduced, making the algorithm
more efficient.

def un i t propagate (formula , v d i c t , v o rder) :
formula = s i m p l i f y w i t h o u t d e l e t i n g c l a u s e (formula , v d i c t)
l e n g t h l i s t = [len (c l a u s e) for c l a u s e in formula]
while 1 in l e n g t h l i s t :

idx = l e n g t h l i s t . index (1)
L = formula [idx] [0]

2

v d i c t [abs (L)] = (L > 0 , idx)
v order . append (abs (L))
formula = s i m p l i f y w i t h o u t d e l e t i n g c l a u s e (formula , v d i c t)
l e n g t h l i s t = [len (c l a u s e) for c l a u s e in formula]

return v d i c t , v o rder

3.2 Clause Learning

Clause learning is implemented to prevent the algorithm from revisiting the same conflicts, thus pruning
the search space. This optimization significantly improves performance on difficult SAT instances.

def c l a u s e l e a r n i n g (formula , v d i c t , v o rder) :
D = formula [g e t c o n f l i c t i d x (formula , v d i c t)]
for p in v order [: : − 1] :

va lue = v d i c t [p]
as s ign , impl i ed = value
i f impl i ed i s None or not v a r i a b l e i s i n c l a u s e (p , D) :

continue
else :

D = r e s o l v e p (formula [impl i ed] , D, p)
return D

3.3 Simplification

Simplification removes clauses that are already satisfied and literals that are false, keeping the formula
as small as possible. This helps in speeding up the subsequent steps of the algorithm.

def s i m p l i f y (formula , v d i c t) :
for i in range (len (formula)) [: : − 1] :

c l a u s e = formula [i]
for j in range (len (c l a u s e)) [: : − 1] :

l i t e r a l = c l a u s e [j]
l i t e r a l e v a l = e v a l l i t e r a l (l i t e r a l , v d i c t)
i f l i t e r a l e v a l == 1 :

formula . pop (i)
break

e l i f l i t e r a l e v a l == 0 :
formula [i] . pop (j)

return formula

3.4 Decision Strategy

Implementation of decision strategy follows code below. As the name of the function suggests, it follows
simple heuristic: Assign true to first undecided variable. This part clearly has a possibility to be optimized
further by using better heuristics.

def dumb dec i s i on s t ra t egy (nvar , v d i c t , v o rder) :
for i in range (1 , nvar + 1) :

try :
v d i c t [i]

except KeyError :
v d i c t [i] = (True , None)
v order . append (i)
return v d i c t , v o rder

a s s e r t False , ” Al l v a r i a b l e s a l r eady a s s i gned ”

3

4 Possible Optimizations and Their Analysis

4.1 Challenging Points

Copying lists. During the algorithm, the formula implemented as list of list is copied several times.
This is to prevent original formula to be changed when not intended. However, this may cause a drawback
of performance, especially in the aspect of the memory.

4.2 Analysis

Comparision to Brute-Force Search. To compare the efficiency of DPLL compared to brute-force
search, number of iteration of loop has been counted. Brute-force searching requires at most 2k number
of iterations where k is the number of variables. A provided satisfiable CNF formula with 544 variables
required 737 iterations and another satisfiable CNF formula with 60 variables required 637 iterations.
Both of cases are extremly efficient compared to the brute-force search.

5 Conclusion

The DPLL algorithm implementation described in this report incorporates key optimizations such as
unit propagation, clause learning, and simplification. These choices were driven by the need to balance
complexity and performance. The experimental results confirm that these optimizations significantly
enhance the algorithm’s efficiency, making it well-suited for solving SAT problems.

4

	Introduction
	Implementation Details
	Data Structure
	Reading Input and Parsing Output
	Main DPLL Function
	Supporting Functions

	Design Decisions and Rationale
	Unit Propagation
	Clause Learning
	Simplification
	Decision Strategy

	Possible Optimizations and Their Analysis
	Challenging Points
	Analysis

	Conclusion

