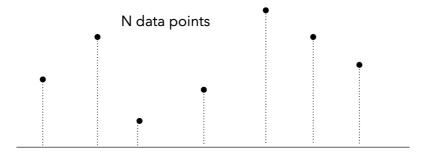


The Cost of Robustness: Tighter Bounds on Parameter Complexity for Robust Memorization in ReLU Nets

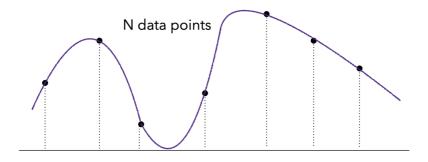
Yujun Kim*, Chaewon Moon*, Chulhee Yun NeurIPS 2025

Memorization



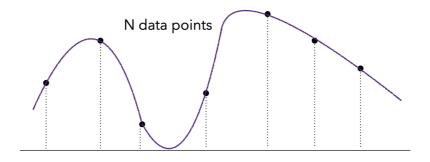
Find a network that maps all ${\cal N}$ data points to their corresponding labels.

Memorization



Find a network that maps all ${\cal N}$ data points to their corresponding labels.

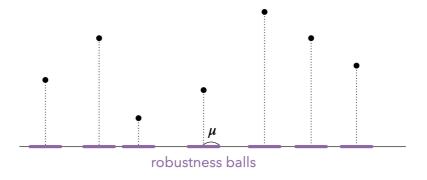
Memorization



Find a network that maps all N data points to their corresponding labels.

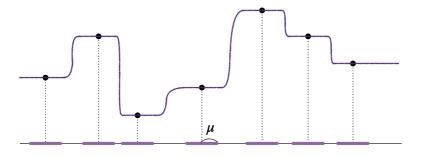
Prior work shows that memorizing N data points requires $\Theta(\sqrt{N})$ parameters.

Robust Memorization



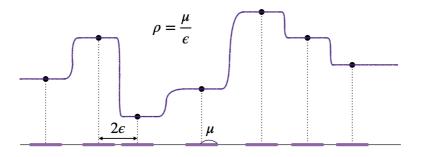
Find a network that maps all points within distance μ to their corresponding labels.

Robust Memorization



Find a network that maps all points within distance μ to their corresponding labels.

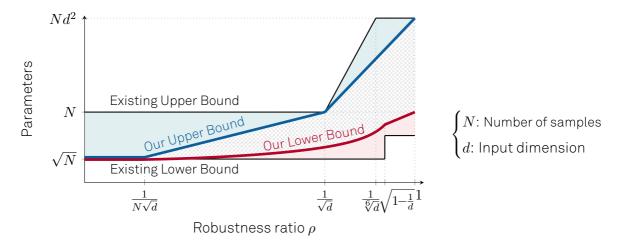
Robust Memorization



Find a network that maps all points within distance μ to their corresponding labels.

Its difficulty depends on the robustness ratio $\rho=\frac{\mu}{\epsilon}$ (robustness radius) (separation constant) .

Contribution



• We provide tighter upper and lower bounds depending on ρ , covering the entire range $\rho \in (0,1)$.

Lower Bounds

Theorem 3.1

For given $\rho\in(0,1)$, if a trainable ReLU network can ρ -robustly memorize any N points in \mathbb{R}^d , it must have

$$P = \Omega\left(\underbrace{\left(\rho^2 \min\{N, d\} + 1\right) d}_{\boxed{1}} + \underbrace{\min\{1/\sqrt{1 - \rho^2}, \sqrt{d}\}\sqrt{N}}_{\boxed{2}}\right)$$

trainable parameters.

- (1) : Derived from the necessary condition on the width of first hidden layer.
- (2) : Derived from the VC-dimension bound.

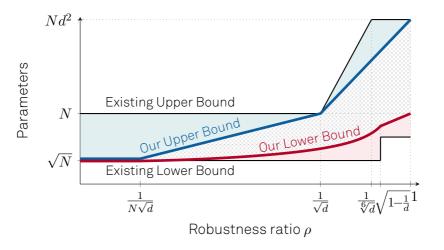
Upper Bounds

Theorem 4.2.

For any dataset $\mathcal{D} \in \mathbf{D}_{d,N,C}$ and $\eta \in (0,1)$, the following statements hold:

- (i) If $\rho \in \left(0, \frac{1}{5N\sqrt{d}}\right]$, there exists $f \in \mathcal{F}_{d,P}$ with $P = \tilde{O}(\sqrt{N})$ that ρ -robustly memorizes \mathcal{D} .
- (ii) If $\rho \in \left(\frac{1}{5N\sqrt{d}}, \frac{1}{5\sqrt{d}}\right]$, there exists $f \in \mathcal{F}_{d,P}$ with $P = \tilde{O}(Nd^{\frac{1}{4}}\rho^{\frac{1}{2}})$ that ρ -robustly memorizes \mathcal{D} with error at most η .
- (iii) If $\rho \in \left(\frac{1}{5\sqrt{d}},1\right)$, there exists $f \in \mathcal{F}_{d,P}$ with $P = \tilde{O}(Nd^2\rho^4)$ that ρ -robustly memorizes \mathcal{D} .
- (i)-(iii) are based on the Johnson-Lindenstrauss lemma.
- (i) and (ii) rely on the mapping from the grid to the lattice.

Conclusion



- For small ρ , robust memorization does not require higher cost than memorization.
- The cost of achieving robustness increases with larger ρ .

Poster Session 4

Thu 4 Dec 4:30 p.m. - 7:30 p.m.

https://arxiv.org/abs/2510.24643