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Memorization

Find a network that maps allN data points to their corresponding labels.
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Memorization
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Prior work shows that memorizingN data points requiresΘ(
√

N) parameters.
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Robust Memorization

Find a network that maps all points within distance µ to their corresponding labels.
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Robust Memorization

Find a network that maps all points within distance µ to their corresponding labels.
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Robust Memorization

Find a network that maps all points within distance µ to their corresponding labels.

Its difficulty depends on the robustness ratio ρ = µ

ϵ

(robustness radius)
(separation constant)

.
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N : Number of samples

d: Input dimension

• We provide tighter upper and lower bounds depending on ρ, covering the entire
range ρ ∈ (0, 1).
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Lower Bounds

Theorem 3.1.

For given ρ ∈ (0, 1), if a trainable ReLU network can ρ-robustly memorize any N

points inRd, it must have

P = Ω
((

ρ2 min
{
N, d

}
+ 1

)
d︸ ︷︷ ︸

1

+ min
{
1/

√
1 − ρ2,

√
d

}√
N︸ ︷︷ ︸

2

)

trainable parameters.

1 : Derived from the necessary condition on the width of first hidden layer.

2 : Derived from the VC-dimension bound.
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Upper Bounds

Theorem 4.2.

For any datasetD ∈ Dd,N,C and η ∈ (0, 1), the following statements hold:

(i) If ρ ∈
(
0, 1

5N
√

d

]
, there exists f ∈ Fd,P with P = Õ(

√
N) that ρ-robustly

memorizesD.

(ii) If ρ ∈
(

1
5N

√
d
, 1

5
√

d

]
, there exists f ∈ Fd,P withP = Õ(Nd

1
4 ρ

1
2 ) that ρ-robustly

memorizesD with error at most η.

(iii) If ρ ∈
(

1
5
√

d
, 1

)
, there exists f ∈ Fd,P with P = Õ(Nd2ρ4) that ρ-robustly

memorizesD.

• (i)-(iii) are based on the Johnson-Lindenstrauss lemma.

• (i) and (ii) rely on the mapping from the grid to the lattice.
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Conclusion
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• For small ρ, robust memorization does not require higher cost than memorization.

• The cost of achieving robustness increases with larger ρ.
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